BASIC STAMP II

Controlling a Hitachi 44780 based LCD display

Purpose:
Control a LCD display with your Basic Stamp II using

an old LCD panel from an Ericsson DBC661 phone.

Author:
Hans Luyten, May 7, 2001 (http://www.weethet.nl)

Note:
all these experiments should work just fine using any Basic Stamp II combined with about any Hitachi 44780 based LCD panel. I used the OEM Basic Stamp II, combined with an OPTREX DMC2034 4x20 LCD panel.

References:
- LCD Module Technical Reference (FAQ)

- LCDDEMO1 by Jon Williams (http://members.aol.com/jonwms)

- Hitachi 44780 technical documentation

CONTENT

2How to connect the LCD to you Basic Stamp II

3Generic Control – Sending text

4Generic Control – Sending instructions

6Generic Control – Initializing the LCD

8OPTREX DMC2034 – A 4x20 LCD layout

8Character layout

9Pin layout

10Example 1: LCDDEMO1.BS2

12Example 2: WATCHDOG.BS2

14Example 3: WATCHDOG2.BS

How to connect the LCD to you Basic Stamp II

Below you will find two tables, both containing identical data, except the first one is the proper way to display the connection. The second table is for the impatient and more experienced user showing what to connect to what.

Make these connections:

	LCD Panel pin
	LCD Function
	Basic Stamp 2

	1
	GND
	Vss (GND)

	2
	+5V
	Vdd (+5V)

	3
	Vee (LCD drive)
	Vss (GND)

	4
	RS (Register Select)
	Pin 4

	5
	R/W (Read/Write)
	Vss (GND)

	6
	E (Edge Enable)
	Pin 5

	7
	DB0 (data bit 0)
	Not connected

	8
	DB1 (data bit 1)
	Not connected

	9
	DB2 (data bit 2)
	Not connected

	10
	DB3 (data bit 3)
	Not connected

	11
	DB4 (data bit 4)
	Pin 0

	12
	DB5 (data bit 5)
	Pin 1

	13
	DB6 (data bit 6)
	Pin 2

	14
	DB7 (data bit 7)
	Pin 3

The quick and dirty notation for the impatient (like myself):

	Basic Stamp 2 pins
	LCD Panel pins

	Vss (GND)
	1 (GND), 3 (Vee), 5 (R/W)

	Vdd (+5V)
	2 (+5V)

	Pin 0
	11 (DB4)

	Pin 1
	12 (DB5)

	Pin 2
	13 (DB6)

	Pin 3
	14 (DB7)

	Pin 4
	4 (RS)

	Pin 5
	6 (E)

Note: the pin out is based on Jon’s LCDDEMO1.BAS. However this did not work for me due to two little mistakes in the LCD connections.

1. LCD_Pin4 and LCD_Pin14 should not be connected to the same pin on the Basic Stamp.

2. The data transmitted from the Basic Stamp using P0 … P3 will never fully reach the LCD since P3 is not connected.

3. DB0 … DB3 do not need to be connected to GND to work properly.

To make the ports work properly we need a little Pbasic code:

Init:
DirL = %00111111 ' set (lower 8) pins 0-5 as outputs

Outs = $0000 ' clear the pins

Generic Control – Sending text

OK, so now we hooked to LCD up to our Basic Stamp 2. How do we control a parallel controlled LCD panel by using only 6 wires?

The answer is actually pretty simple (thanks to Jon’s work): the LCD panel can be controlled using 8-bits or 4-bits. 4-bit mode is working identical to 8-bit mode mode, however we transmit the upper 4 bits and the lower 4 bits in sequence instead of 8 bits parallel.

Practical example:

Say we would like to send the character ‘A’ which is in binary code:
0100 0001 (hexadecimal $41, decimal 65).

First we send the upper 4 bits called a nibble. Now this will be confusing when you start with it, but you’ll get used to it. The upper 4 bits are in fact the first 4 bits in our binary representation: 0100 !!

The lower 4 bits are in fact the last 4 bits in our binary representation. So this is what we send:

0100

0001

Which will result in a character ‘A’ on your LCD display.

(In 8-bit mode we would have send 01000001 in one action)

This all sounds pretty hard to do, but be assured. The Basic Stamp 2 has some neat routines that will help us with this task.

Let’s say that a character uses the space of one byte (=8 bits) and we define a variable for that purpose. In Pbasic that would like this:

char VAR Byte ' character sent to LCD

Here we define the variable (‘var-statement) called ‘char’ of type ‘Byte’.

Pbasic offers a nice function for the byte: HIGHNIB (high nibble) and LOWNIB (lower nibble). The statement shown below will return the upper 4-bits of the character:

OutA = char.HIGHNIB ' output high nibble

Similar, the next statement will output the lower 4 bits:

OutA = char.LOWNIB ' output low nibble

To get read/write activity we just need to add a little additional code to get a pulse to the ‘E’-pin of the LCD panel, which we connected to pin5 of the Basic Stamp 2, after sending the nibble. Once more Pbasic shows it’s power.

Sending a simple ‘high’ (=1) to pin5 is done with this little piece of:

PULSOUT 5, 1 ' strobe the Enable line

To get the LCD to know that we are sending data (not a instruction) we must raise the ‘RS’-pin of the LCD high as well. Since we leave RS high, you might wonder why we keep doing it, but that soon will be clear once we implement a routine for sending instructions.

Setting RS high involves setting pin4 of the Basic Stamp 2 to high:

HIGH 4 ' goto character mode

That’s it for sending characters. However that’s not enough to get the display operational. See the next paragraph for sending instructions.

Below you will find the gosub-routine for sending characters:

' =-=-=-=-=-=-=-=-=-=-=-=

' Write ASCII char to LCD

' =-=-=-=-=-=-=-=-=-=-=-=

LCDsendchar:

OutA = char.HIGHNIB ' output high nibble

PULSOUT 5, 1 ' strobe the Enable line

OutA = char.LOWNIB ' output low nibble

PULSOUT 5, 1

HIGH 4 ' return to character mode

RETURN

Generic Control – Sending instructions

Sending instructions is basically the same as sending characters. The only difference is that pin4 (RS of the LCD) should be LOW instead of HIGH. The LCD panel uses this to make distinction between text and instructions.

The only difference therefore is to set RS low:

LOW RS ' enter command mode

Next step is to send the instruction. The instruction however is basically a character, so we can use our ‘LCDsendchar’ routine to send the instruction.

Our gosub-routine will look like this:

' =-=-=-=-=-=-=-=-=-=-=-=-

' Write instruction to LCD

' =-=-=-=-=-=-=-=-=-=-=-=-

LCDcmd:
LOW RS ' enter command mode

LCDsendchar

 ' then write the character

What instructions are supported you might wonder. Take a look at this table:

	Binary value
	Purpose / Use

	0
	0
	0
	0
	0
	0
	0
	1
	Clear display and return cursor to home position.

	0
	0
	0
	0
	0
	0
	1
	X
	Return cursor to home position.
The value of ‘X’ does not matter.

	0
	0
	0
	0
	0
	1
	D
	S
	Entry mode.
Set cursor move directions and whether or not display can scroll.

D=1: cursor moves to the right

D=0: cursor moves to the left

S=1: scroll the cursor in the direction set by ‘D’ when the cursor is at the edge of the display.

	0
	0
	0
	0
	1
	D
	C
	B
	On/Off control.

D=1: display ON

D=0: display OFF

C=1: cursor (underscore) ON

C=0: cursor (underscore) OFF

B=1: blinking cursor ON

B=0: blinking cursor OFF

	0
	0
	0
	1
	S
	R
	X
	X
	Cursor/Shift control.

Move cursor or scroll display without changing display data.

S=1: scroll display

S=0: move cursor

R=1: to the right

R=0: to the left

The value of ‘X’ does not matter.

	0
	0
	1
	D
	B
	F
	X
	X
	Function Set.

Set interfacing data length, mode and font.

D=1: 8-bit interface

D=0: 4-bit interface

N=1: 1/16 duty (>1 line mode)

N=0: 1/8 or 1/11 duty (1 line mode)

F=1: 5x11 matrix font

F=0: 5x8 matrix font

	0
	1
	A
	A
	A
	A
	A
	A
	Set character RAM address.

For defining custom characters.

	1
	A
	A
	A
	A
	A
	A
	A
	Set display RAM address.

Used for quick repositioning cursor.

On 2 line models 1LAAAAAA ‘L’ can be used to identify line.
Note: 4 line models have only 2 lines. Lines 1 and 3 are 1 single line, and lines 2 and 4 are a single line!

AAAAAA can be interpreted as a 6 bit column number.

So now we can control the display a bit more …

To keep your code readable, you might want to define some constants for this purpose:

' LCD control characters

'

ClrLCD CON %00000001 ' clear the LCD

CrsrHm CON $00000010 ' move cursor to home position

CrsrLf CON $00010000 ' move cursor left

CrsrRt CON $00010100 ' move cursor right

DispLf CON $00011000 ' shift displayed chars left

DispRt CON $00011100 ' shift displayed chars right

DDRam CON $10000000 ' Display Data RAM control

So how do we use the instructions?

Well, having defined some constants, an gosub-routines for writing characters and one instructions, things should work pretty easy.

Practical example:

Let’s clear the display:

Char = ClrLCD

GOSUB LCDcmd

Or let’s move the cursor to the left:

Char = CrsrLf

GOSUB LCDcmd
You might think that’s it, but it isn’t. Before we can do ANYTHING with the LCD display, we need to initialize it.

Generic Control – Initializing the LCD

The gosub-routines we just defined are very useful for this particular task: initializing the LCD display.

We need to keep in mind that the display must be initialized in 4-bit mode. Using the reference manual of Hitachi, this should be the way to do it:

	Step
	Action
	Code (=char value)

	1
	Power ON
	-

	2
	Set 8-bit mode (yes! 8 bit!)
	00000011

	3
	Set 8-bit mode (yes! 8 bit!)
	00000011

	4
	Set 8-bit mode (yes! 8 bit!)
	00000011

	5
	Set 4-bit mode
	00000010

	6
	Set duty mode
	00101100*

	7
	Display/Cursor/Blink OFF
	00000000*

	8
	Display/Cursor/Blink ON
	00001111*

	9
	Set entry mode
	00000110*

* = Use instruction table to customize to your needs

So what does the initialization look like?

LCDini:

pause 50

' Wait for LCD init

' =================================

' STANDARD HITACHI 44780 4-BIT INIT

' =================================

char=%00000011

' Set 8-bit mode (1)

GOSUB LCDcmd

char=%00000011

' Set 8-bit mode (2)

GOSUB LCDcmd

char=%00000011

' Set 8-bit mode (3)

GOSUB LCDcmd

char=%00000010

' Set 4-bit mode

GOSUB LCDcmd

char=%00101111

' Set duty cycle 11xx = 5x11 matrix

GOSUB LCDcmd

'

10xx = 5x8 matric

char=%00000000

' Display control mode

GOSUB LCDcmd

char=%00001000

' Set display OFF, cursor OFF, blink OFF

GOSUB LCDcmd

char=%00000000

' Display control mode

GOSUB LCDcmd

char=%00001111

' Set display ON, cursor ON, blink ON

GOSUB LCDcmd

' 11CB -> C=1 cursor on, B=1 blink on

char=%00000000

' Entry control mode

GOSUB LCDcmd

char=%00000110

' Set cursor right, no display shift

GOSUB LCDcmd

' 01IS -> I=1 cursor right, S=1 shift display

char = ClrLCD

' Clear LCD

GOSUB LCDcmd
The official FAQ and Hitachi documentation mention al lot about the execution timing. Using the Basic Stamp 2 that will not be an issue.

OPTREX DMC2034 and DMC50400 – A 4x20 LCD layout

I used both these Optrex 4x20 LCD display, which uses the Hitachi 44780 controller. The pin-layout of this display is basic for all Hitachi-based LCD displays. The character layout of the display is pretty basic for all 4x20 displays.

Character layout

For 4x20 LCD’s you will generally find to types of layout.
More recent displays support the layout you find below.

	0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	10
	11
	12
	13
	14
	15
	16
	17
	18
	19

	20
	
	
	
	
	
	
	
	
	
	30
	
	
	
	
	
	
	
	
	39

	40
	
	
	
	
	
	
	
	
	
	50
	
	
	
	
	
	
	
	
	59

	60
	
	
	
	
	
	
	
	
	
	70
	
	
	
	
	
	
	
	
	79

When filling the character positions, the display will be filled starting in the upper left corner and end in the lower right corner.

Older 4x20 LCD displays, like the Optrex I’m using, have different line layout:

	0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	10
	11
	12
	13
	14
	15
	16
	17
	18
	19

	40
	
	
	
	
	
	
	
	
	
	50
	
	
	
	
	
	
	
	
	59

	20
	
	
	
	
	
	
	
	
	
	30
	
	
	
	
	
	
	
	
	39

	60
	
	
	
	
	
	
	
	
	
	70
	
	
	
	
	
	
	
	
	79

Notice that the lines 1 and 3 follow each other. Line 2 is followed by line 4. So basically when filling all character positions, the lines will be filed in this order:

line 1, line 3, line 2 and finally line 4.

This makes it a bit harder to control the position of the cursor on the LCD display. You can take a look at this gosub-routine I wrote (see Example 3 for a demo) which uses the cursor repositioning functionality of the display:

' ============================

' Write char at position (X,Y)

' ============================

' Usage:

'
X=10

' horizontal position or column (X)

'
Y=2

' vertical position or line (Y)

'
char="A"

' character to write

'
GOSUB LCDpos

' position cursor and write char

'

LCDpos:

char2=char

' Save char

char=CrsrHm

' Set cursor to home location

GOSUB LCDcmd

counter=%00000000

' Reset counter (=position 0)

IF Y=1 THEN done

IF Y=2 THEN pos_row2

IF Y=3 THEN pos_row3

IF Y=4 THEN pos_row4

pos_row2:

' 4x20: row2 starts at position 64

counter=%01000000

GOTO position

pos_row3:

' 4x20: row3 starts at position 20

counter=%00010100

GOTO position

pos_row4:

' 4x20: row4 starts at position 84

counter=%01010100

GOTO position

position:

' 4x20: row1 starts at position 0

counter=counter+X-1

' Add X to Y position minus 1 (pos 1 = 0)

char=%10000000+counter

GOSUB LCDcmd

done:

char=char2

' restore old char

GOSUB LCDwr

' and write it

RETURN

Pin layout

Hitachi based LCD display have a very common connector to the outer world:

	LCD Panel pin
	LCD Function

	1
	GND

	2
	+5V

	3
	Vee (LCD drive)

	4
	RS (Register Select)

	5
	R/W (Read/Write)

	6
	E (Edge Enable)

	7
	DB0 (data bit 0)

	8
	DB1 (data bit 1)

	9
	DB2 (data bit 2)

	10
	DB3 (data bit 3)

	11
	DB4 (data bit 4)

	12
	DB5 (data bit 5)

	13
	DB6 (data bit 6)

	14
	DB7 (data bit 7)

Example 1: LCDDEMO1.BS2

This is an adapted version of Jon Williams (http://members.aol.com/jonwms) his LCDDEMO1.BS2. It basically initializes the LCD display and sends a text to the display:

' -----[Constants]---

'

RS CON 4 ' Register Select (1 = char)

E CON 5 ' LCD Enable pin (1 = enabled)

' LCD control characters

'

ClrLCD CON $01 ' clear the LCD

CrsrHm CON $02 ' move cursor to home position

CrsrLf CON $10 ' move cursor left

CrsrRt CON $14 ' move cursor right

DispLf CON $18 ' shift displayed chars left

DispRt CON $1C ' shift displayed chars right

DDRam CON $80 ' Display Data RAM control

' -----[Variables]---

'

char VAR Byte ' character sent to LCD

index VAR Byte ' loop counter

' -----[EEPROM Data]---

'

Msg DATA "BASIC Stamp 2 LCD in action" ' preload message

' -----[Initialization]--

'

Init:
DirL = %00111111 ' set pins 0-5 as outputs

Outs = $0000 ' clear the pins

' Initialize the LCD (Hitachi HD44780 controller)

'

LCDinit:
'pause 500

' Wait for LCD init

' =================================

' STANDARD HITACHI 44780 4-BIT INIT

' =================================

char=%00000011

' Set 8-bit mode (1)

GOSUB LCDcmd

char=%00000011

' Set 8-bit mode (2)

GOSUB LCDcmd

char=%00000011

' Set 8-bit mode (3)

GOSUB LCDcmd

char=%00000010

' Set 4-bit mode

GOSUB LCDcmd

char=%00101111

' Set duty cycle 11xx = 5x11 matrix

GOSUB LCDcmd

'

10xx = 5x8 matric

char=%00000000

' Display control mode

GOSUB LCDcmd

char=%00001000

' Set display OFF, cursor OFF, blink OFF

GOSUB LCDcmd

char=%00000000

' Display control mode

GOSUB LCDcmd

char=%00001111

' Set display ON, cursor ON, blink ON

GOSUB LCDcmd

' 11CB -> C=1 cursor on, B=1 blink on

char=%00000000

' Entry control mode

GOSUB LCDcmd

char=%00000110

' Set cursor right, no display shift

GOSUB LCDcmd

' 01IS -> I=1 cursor right, S=1 shift display

char = ClrLCD

' Clear LCD

GOSUB LCDcmd

' -----[Main Code]---

'

Start:

FOR index = 0 TO 39

 READ Msg + index, char ' get character from EEPROM

 'char=index

 GOSUB LCDwr ' write it

NEXT

PAUSE 1000 ' wait 2 seconds

char = ClrLCD ' clear the LCD

GOSUB LCDcmd

PAUSE 500

GOTO Start ' do it all over

' -----[Subroutines]---

'

' Send command to the LCD

'

LCDcmd: LOW RS ' enter command mode

'

' Write ASCII char to LCD

'

LCDwr:

OutA = char.HIGHNIB ' output high nibble

PULSOUT E, 1 ' strobe the Enable line

OutA = char.LOWNIB ' output low nibble

PULSOUT E, 1

HIGH RS ' return to character mode

RETURN

Example 2: WATCHDOG.BS2

In this example a gauge is running up and down using a routine to reposition the cursor on the display.

' -----[Constants]---

'

RS CON 4 ' Register Select (1 = char)

E CON 5 ' LCD Enable pin (1 = enabled)

' LCD control characters

'

ClrLCD CON $01 ' clear the LCD

CrsrHm CON $02 ' move cursor to home position

CrsrLf CON $10 ' move cursor left

CrsrRt CON $14 ' move cursor right

DispLf CON $18 ' shift displayed chars left

DispRt CON $1C ' shift displayed chars right

DDRam CON $80 ' Display Data RAM control

' -----[Variables]---

'

char VAR Byte ' character sent to LCD

char2 VAR Byte

 ' Duplicate character store

index VAR Byte ' loop counter

counter VAR
 Byte

 ' 2nd counter

X VAR Byte ' X position

Y VAR Byte ' Y position

' -----[Initialization]--

'

Init: DirL = %00111111 ' set pins 0-5 as outputs

 Outs = $0000 ' clear the pins

' =================================

' STANDARD HITACHI 44780 4-BIT INIT

' =================================

LCDinit:
pause 500

' Wait for LCD init

 char=%00000011

' Set 8-bit mode (1)

 GOSUB LCDcmd

 char=%00000011

' Set 8-bit mode (2)

 GOSUB LCDcmd

 char=%00000011

' Set 8-bit mode (3)

 GOSUB LCDcmd

 char=%00000010

' Set 4-bit mode

 GOSUB LCDcmd

 char=%00101111

' Set duty cycle 11xx = 5x11 matrix

 GOSUB LCDcmd

'

10xx = 5x8 matric

 char=%00000000

' Display control mode

 GOSUB LCDcmd

 char=%00001000

' Set display OFF, cursor OFF, blink OFF

 GOSUB LCDcmd

 char=%00000000

' Display control mode

 GOSUB LCDcmd

 char=%00001100

' Set display ON, cursor ON, blink ON

 GOSUB LCDcmd

' 11CB -> C=1 cursor on, B=1 blink on

 char=%00000000

' Entry control mode

 GOSUB LCDcmd

 char=%00000110

' Set cursor right, no display shift

 GOSUB LCDcmd

' 01IS -> I=1 cursor right, S=1 shift display

char = ClrLCD

' Clear LCD

GOSUB LCDcmd

PAUSE 500

' -----[Main Code]---

'

Start:

Y=2

FOR X=6 TO 15

char="0"+X-6

GOSUB LCDPos

NEXT

start2:

Y=1

char=255

FOR X=6 to 15

GOSUB LCDPos

pause 50

NEXT

char=" "

FOR X=6 to 15

GOSUB LCDPos

pause 50

NEXT

goto start2

' -----[Subroutines]---

' ============================

' Write char at position (X,Y)

' ============================

' Usage:

'
X=10

' horizontal position or column (X)

'
Y=2

' vertikal position or line (Y)

'
char="A"

' character to write

'
GOSUB LCDpos
' position cursor and write char

'

LCDpos:

char2=char

' Save char

char=CrsrHm

' Set cursor to home location

GOSUB LCDcmd

counter=0

' Reset counter

IF Y=1 THEN position

IF Y=2 THEN pos_row2

IF Y=3 THEN pos_row3

IF Y=4 THEN pos_row4

pos_row2:

' 4x20: row2 starts at position 40

counter=40

GOTO position

pos_row3:

' 4x20: row3 starts at position 20

counter=20

GOTO position

pos_row4:

' 4x20: row4 starts at position 60

counter=60

GOTO position

position:

' 4x20: row1 starts at position 0

counter=counter+X-1

' Add X to Y position minus 1 (pos 1 = 0)

IF counter=0 THEN done

' work around the loop for pos (0,0)

for index=1 to counter

' move cursor x steps to the right

char=CrsrRt

GOSUB LCDcmd

NEXT

done:

char=char2

' restore old char

GOSUB LCDwr

' and write it

RETURN

' =======================

' Send command to the LCD

' =======================

LCDcmd:

LOW RS ' enter command mode

' =======================

' Write ASCII char to LCD

' =======================

LCDwr:

OutA = char.HIGHNIB ' output high nibble

PULSOUT E, 1 ' strobe the Enable line

OutA = char.LOWNIB ' output low nibble

PULSOUT E, 1

HIGH RS ' return to character mode

RETURN

Example 3: WATCHDOG2.BS

This example is similar to the previous example with the difference to be found in the positioning routine, which is considerably faster in this demo.

' -----[Constants]---

'

RS CON 4 ' Register Select (1 = char)

E CON 5 ' LCD Enable pin (1 = enabled)

' LCD control characters

'

ClrLCD CON $01 ' clear the LCD

CrsrHm CON $02 ' move cursor to home position

CrsrLf CON $10 ' move cursor left

CrsrRt CON $14 ' move cursor right

DispLf CON $18 ' shift displayed chars left

DispRt CON $1C ' shift displayed chars right

DDRam CON $80 ' Display Data RAM control

' -----[Variables]---

'

char VAR Byte ' character sent to LCD

char2 VAR Byte

 ' Duplicate character store

index VAR Byte ' loop counter

counter VAR
 Byte

 ' 2nd counter

X VAR Byte ' X position

Y VAR Byte ' Y position

' -----[Initialization]--

'

Init: DirL = %00111111 ' set pins 0-5 as outputs

 Outs = $0000 ' clear the pins

' =================================

' STANDARD HITACHI 44780 4-BIT INIT

' =================================

LCDinit:
pause 500

' Wait for LCD init

 char=%00000011

' Set 8-bit mode (1)

 GOSUB LCDcmd

 char=%00000011

' Set 8-bit mode (2)

 GOSUB LCDcmd

 char=%00000011

' Set 8-bit mode (3)

 GOSUB LCDcmd

 char=%00000010

' Set 4-bit mode

 GOSUB LCDcmd

 char=%00101111

' Set duty cycle 11xx = 5x11 matrix

 GOSUB LCDcmd

'

10xx = 5x8 matric

 char=%00000000

' Display control mode

 GOSUB LCDcmd

 char=%00001000

' Set display OFF, cursor OFF, blink OFF

 GOSUB LCDcmd

 char=%00000000

' Display control mode

 GOSUB LCDcmd

 char=%00001100

' Set display ON, cursor ON, blink ON

 GOSUB LCDcmd

' 11CB -> C=1 cursor on, B=1 blink on

 char=%00000000

' Entry control mode

 GOSUB LCDcmd

 char=%00000110

' Set cursor right, no display shift

 GOSUB LCDcmd

' 01IS -> I=1 cursor right, S=1 shift display

char = ClrLCD

' Clear LCD

GOSUB LCDcmd

PAUSE 500

' -----[Main Code]---

'

Start:

Y=2

FOR X=6 TO 15

char="0"+X-6

GOSUB LCDPos

NEXT

start2:

Y=4

char=255

FOR X=6 to 15

GOSUB LCDPos

pause 50

NEXT

char=" "

FOR X=6 to 15

GOSUB LCDPos

pause 50

NEXT

goto start2

' -----[Subroutines]---

' ============================

' Write char at position (X,Y)

' ============================

' Usage:

'
X=10

' horizontal position or column (X)

'
Y=2

' vertical position or line (Y)

'
char="A"

' character to write

'
GOSUB LCDpos
' position cursor and write char

'

LCDpos:

char2=char

' Save char

char=CrsrHm

' Set cursor to home location

GOSUB LCDcmd

counter=%00000000

' Reset counter (=position 0)

IF Y=1 THEN done

IF Y=2 THEN pos_row2

IF Y=3 THEN pos_row3

IF Y=4 THEN pos_row4

pos_row2:

' 4x20: row2 starts at position 64

counter=%01000000

GOTO position

pos_row3:

' 4x20: row3 starts at position 20

counter=%00010100

GOTO position

pos_row4:

' 4x20: row4 starts at position 84

counter=%01010100

GOTO position

position:

' 4x20: row1 starts at position 0

counter=counter+X-1

' Add X to Y position minus 1 (pos 1 = 0)

char=%10000000+counter

GOSUB LCDcmd

done:

char=char2

' restore old char

GOSUB LCDwr

' and write it

RETURN

' =======================

' Send command to the LCD

' =======================

LCDcmd:

LOW RS ' enter command mode

' =======================

' Write ASCII char to LCD

' =======================

LCDwr:

OutA = char.HIGHNIB ' output high nibble

PULSOUT E, 1 ' strobe the Enable line

OutA = char.LOWNIB ' output low nibble

PULSOUT E, 1

HIGH RS ' return to character mode

RETURN

My BOE – Board Of Education

Here you will find what I did to create a so called BOE (Board Of Education) for purposes like this (LCD testing).

BOM – Bill Of Materials

1x
DIL 40 chip socket

1x
Experimentation board

First I mounted a regular chip-socket (DIL-40) which I cut into two pieces. This will be the mount connector for the OEM Basic Stamp 2 board.

Next I soldered to other part of the DIL-4 (only 8 pins of them) upside down on the board, so it would function as a socket kind of thing. This socket I have numbered the pins of: pin 1 to 8 and wired them to the OEM Basic Stamp 2 socket. Next I wired the connections of the LCD panel to a connector that fit’s the socket I created for the LCD hookup;

	PIN
	Basic Stamp 2 pins
	LCD Panel pins

	1
	Vss (GND)
	1, 3, 5

	2
	Vdd (+5V)
	2

	3
	Pin 0 (DB4)
	11

	4
	Pin 1 (DB5)
	12

	5
	Pin 2 (DB6)
	13

	6
	Pin 3 (DB7)
	14

	7
	Pin 4 (RS)
	4

	8
	Pin 5 (E)
	6

Below you’ll find some snapshots of this board:

[image: image1.jpg]
[image: image2.jpg]
[image: image3.jpg]
[image: image4.jpg]
